Information

  ·  What is an RSS Feed?
  ·  The History of RSS Feeds
  ·  RSS Versions and Formats

  ·  Latest News

RSS Feed Categories

  ·  Arts  (287)
  ·  Business  (167)
  ·  Computers  (218)
  ·  Education  (5)
  ·  Entertainment  (10)
  ·  Games  (24)
  ·  Health  (72)
  ·  Home  (51)
  ·  Kids and Teens  (7)
  ·  Lifestyle  (5)
  ·  News  (118)
  ·  Recreation  (125)
  ·  Reference  (47)
  ·  Regional  (1,284)
  ·  Science  (131)
  ·  Shopping  (6)
  ·  Society  (200)
  ·  Sports  (214)
  ·  World  (1,005)








 

Feed: THE JOURNAL OF CLINICAL INVESTIGATION -- CURRENT ISSUE

The Journal of Clinical Investigation RSS feed -- Current issue


Increased mitochondrial arginine metabolism supports bioenergetics in asthma
  By: Weiling Xu, Sudakshina Ghosh, Suzy A.A. Comhair, Kewal Asosingh, Allison J. Janocha, Deloris A. Mavrakis, Carole D. Bennett, Lourdes L. Gruca, Brian B. Graham, Kimberly A. Queisser, Christina C. Kao, Samuel H. Wedes, John M. Petrich, Rubin M. Tuder, Satish C. Kalhan, Serpil C. Erzurum

High levels of arginine metabolizing enzymes, including inducible nitric oxide synthase (iNOS) and arginase (ARG), are typical in asthmatic airway epithelium; however, little is known about the metabolic effects of enhanced arginine flux in asthma. Here, we demonstrated that increased metabolism sustains arginine availability in asthmatic airway epithelium with consequences for bioenergetics and inflammation. Expression of iNOS, ARG2, arginine synthetic enzymes, and mitochondrial respiratory complexes III and IV was elevated in asthmatic lung samples compared with healthy controls. ARG2 overexpression in a human bronchial epithelial cell line accelerated oxidative bioenergetic pathways and suppressed hypoxia-inducible factors (HIFs) and phosphorylation of the signal transducer for atopic Th2 inflammation STAT6 (pSTAT6), both of which are implicated in asthma etiology. Arg2-deficient mice had lower mitochondrial membrane potential and greater HIF-2α than WT animals. In an allergen-induced asthma model, mice lacking Arg2 had greater Th2 inflammation than WT mice, as indicated by higher levels of pSTAT6, IL-13, IL-17, eotaxin, and eosinophils and more mucus metaplasia. Bone marrow transplants from Arg2-deficient mice did not affect airway inflammation in recipient mice, supporting resident lung cells as the drivers of elevated Th2 inflammation. These data demonstrate that arginine flux preserves cellular respiration and suppresses pathological signaling events that promote inflammation in asthma.



Autoantibodies against thrombospondin type 1 domain–containing 7A induce membranous nephropathy
  By: Nicola M. Tomas, Elion Hoxha, Anna T. Reinicke, Lars Fester, Udo Helmchen, Jens Gerth, Friederike Bachmann, Klemens Budde, Friedrich Koch-Nolte, Gunther Zahner, Gabriele Rune, Gerard Lambeau, Catherine Meyer-Schwesinger, Rolf A.K. Stahl

Membranous nephropathy (MN) is the most common cause of nephrotic syndrome in adults, and one-third of patients develop end-stage renal disease (ESRD). Circulating autoantibodies against the podocyte surface antigens phospholipase A2 receptor 1 (PLA2R1) and the recently identified thrombospondin type 1 domain–containing 7A (THSD7A) are assumed to cause the disease in the majority of patients. The pathogenicity of these antibodies, however, has not been directly proven. Here, we have reported the analysis and characterization of a male patient with THSD7A-associated MN who progressed to ESRD and subsequently underwent renal transplantation. MN rapidly recurred after transplantation. Enhanced staining for THSD7A was observed in the kidney allograft, and detectable anti-THSD7A antibodies were present in the serum before and after transplantation, suggesting that these antibodies induced a recurrence of MN in the renal transplant. In contrast to PLA2R1, THSD7A was expressed on both human and murine podocytes, enabling the evaluation of whether anti-THSD7A antibodies cause MN in mice. We demonstrated that human anti-THSD7A antibodies specifically bind to murine THSD7A on podocyte foot processes, induce proteinuria, and initiate a histopathological pattern that is typical of MN. Furthermore, anti-THSD7A antibodies induced marked cytoskeletal rearrangement in primary murine glomerular epithelial cells as well as in human embryonic kidney 293 cells. Our findings support a causative role of anti-THSD7A antibodies in the development of MN.



Foxc1 and Foxc2 deletion causes abnormal lymphangiogenesis and correlates with ERK hyperactivation
  By: Anees Fatima, Ying Wang, Yutaka Uchida, Pieter Norden, Ting Liu, Austin Culver, William H. Dietz, Ford Culver, Meredith Millay, Yoh-suke Mukouyama, Tsutomu Kume

The lymphatic vasculature is essential for maintaining interstitial fluid homeostasis, and dysfunctional lymphangiogenesis contributes to various pathological processes, including inflammatory disease and tumor metastasis. Mutations in FOXC2 are dominantly associated with late-onset lymphedema; however, the precise role of FOXC2 and a closely related factor, FOXC1, in the lymphatic system remains largely unknown. Here we identified a molecular cascade by which FOXC1 and FOXC2 regulate ERK signaling in lymphatic vessel growth. In mice, lymphatic endothelial cell–specific (LEC-specific) deletion of Foxc1, Foxc2, or both resulted in increased LEC proliferation, enlarged lymphatic vessels, and abnormal lymphatic vessel morphogenesis. Compared with LECs from control animals, LECs from mice lacking both Foxc1 and Foxc2 exhibited aberrant expression of Ras regulators, and embryos with LEC-specific deletion of Foxc1 and Foxc2, alone or in combination, exhibited ERK hyperactivation. Pharmacological ERK inhibition in utero abolished the abnormally enlarged lymphatic vessels in FOXC-deficient embryos. Together, these results identify FOXC1 and FOXC2 as essential regulators of lymphangiogenesis and indicate a new potential mechanistic basis for lymphatic-associated diseases.



The Fukushima nuclear disaster is ongoing
  By: Andrew R. Marks

The 5th anniversary of the Fukushima disaster and the 30th anniversary of the Chernobyl disaster, the two most catastrophic nuclear accidents in history, both occurred recently. Images of Chernobyl are replete with the international sign of radioactive contamination (a circle with three broad spokes radiating outward in a yellow sign). In contrast, ongoing decontamination efforts at Fukushima lack international warnings about radioactivity. Decontamination workers at Fukushima appear to be poorly protected against radiation. It is almost as if the effort is to make the Fukushima problem disappear. A more useful response would be to openly acknowledge the monumental problems inherent in managing a nuclear plant disaster. Lessons from Chernobyl are the best predictors of what the Fukushima region of Japan is coping with in terms of health and environmental problems following a nuclear catastrophe.



Uropathogenic Escherichia coli strain CFT073 disrupts NLRP3 inflammasome activation
  By: Anna Waldhuber, Manoj Puthia, Andreas Wieser, Christine Cirl, Susanne Dürr, Silke Neumann-Pfeifer, Simone Albrecht, Franziska Römmler, Tina Müller, Yunji Zheng, Sören Schubert, Olaf Groß, Catharina Svanborg, Thomas Miethke

Successful bacterial pathogens produce an array of virulence factors that allow subversion of the immune system and persistence within the host. For example, uropathogenic Escherichia coli strains, such as CFT073, express Toll/IL-1 receptor–containing (TIR-containing) protein C (TcpC), which impairs TLR signaling, thereby suppressing innate immunity in the urinary tract and enhancing persistence in the kidneys. Here, we have reported that TcpC also reduces secretion of IL-1β by directly interacting with the NACHT leucin-rich repeat PYD protein 3 (NLRP3) inflammasome, which is crucial for recognition of pathogens within the cytosol. At a low MOI, IL-1β secretion was minimal in CFT073-infected macrophages; however, IL-1β release was markedly increased in macrophages infected with CFT073 lacking tcpC. Induction of IL-1β secretion by CFT073 and tcpC–deficient CFT073 required the NLRP3 inflammasome. TcpC attenuated activation of the NLRP3 inflammasome by binding both NLRP3 and caspase-1 and thereby preventing processing and activation of caspase-1. Moreover, in a murine urinary tract infection model, CFT073 infection rapidly induced expression of the NLRP3 inflammasome in the bladder mucosa; however, the presence of TcpC in WT CFT073 reduced IL-1β levels in the urine of infected mice. Together, these findings illustrate how uropathogenic E. coli use the multifunctional virulence factor TcpC to attenuate innate immune responses in the urinary tract.



Transcription factor TLX1 controls retinoic acid signaling to ensure spleen development
  By: Elisa Lenti, Diego Farinello, Kazunari K. Yokoyama, Dmitry Penkov, Laura Castagnaro, Giovanni Lavorgna, Kenly Wuputra, Lisa L. Sandell, Naomi E. Butler Tjaden, Francesca Bernassola, Nicoletta Caridi, Anna De Antoni, Michael Wagner, Katja Kozinc, Karen Niederreither, Francesco Blasi, Diego Pasini, Gregor Majdic, Giovanni Tonon, Paul A. Trainor, Andrea Brendolan

The molecular mechanisms that underlie spleen development and congenital asplenia, a condition linked to increased risk of overwhelming infections, remain largely unknown. The transcription factor TLX1 controls cell fate specification and organ expansion during spleen development, and Tlx1 deletion causes asplenia in mice. Deregulation of TLX1 expression has recently been proposed in the pathogenesis of congenital asplenia in patients carrying mutations of the gene-encoding transcription factor SF-1. Herein, we have shown that TLX1-dependent regulation of retinoic acid (RA) metabolism is critical for spleen organogenesis. In a murine model, loss of Tlx1 during formation of the splenic anlage increased RA signaling by regulating several genes involved in RA metabolism. Uncontrolled RA activity resulted in premature differentiation of mesenchymal cells and reduced vasculogenesis of the splenic primordium. Pharmacological inhibition of RA signaling in Tlx1-deficient animals partially rescued the spleen defect. Finally, spleen growth was impaired in mice lacking either cytochrome P450 26B1 (Cyp26b1), which results in excess RA, or retinol dehydrogenase 10 (Rdh10), which results in RA deficiency. Together, these findings establish TLX1 as a critical regulator of RA metabolism and provide mechanistic insights into the molecular determinants of human congenital asplenia.



MicroRNA-140-5p and SMURF1 regulate pulmonary arterial hypertension
  By: Alexander M.K. Rothman, Nadine D. Arnold, Josephine A. Pickworth, James Iremonger, Loredana Ciuclan, Robert M.H. Allen, Sabine Guth-Gundel, Mark Southwood, Nicholas W. Morrell, Matthew Thomas, Sheila E. Francis, David J. Rowlands, Allan Lawrie

Loss of the growth-suppressive effects of bone morphogenetic protein (BMP) signaling has been demonstrated to promote pulmonary arterial endothelial cell dysfunction and induce pulmonary arterial smooth muscle cell (PASMC) proliferation, leading to the development of pulmonary arterial hypertension (PAH). MicroRNAs (miRs) mediate higher order regulation of cellular function through coordinated modulation of mRNA targets; however, miR expression is altered by disease development and drug therapy. Here, we examined treatment-naive patients and experimental models of PAH and identified a reduction in the levels of miR-140-5p. Inhibition of miR-140-5p promoted PASMC proliferation and migration in vitro. In rat models of PAH, nebulized delivery of miR-140-5p mimic prevented the development of PAH and attenuated the progression of established PAH. Network and pathway analysis identified SMAD-specific E3 ubiquitin protein ligase 1 (SMURF1) as a key miR-140-5p target and regulator of BMP signaling. Evaluation of human tissue revealed that SMURF1 is increased in patients with PAH. miR-140-5p mimic or SMURF1 knockdown in PASMCs altered BMP signaling, further supporting these factors as regulators of BMP signaling. Finally, Smurf1 deletion protected mice from PAH, demonstrating a critical role in disease development. Together, these studies identify both miR-140-5p and SMURF1 as key regulators of disease pathology and as potential therapeutic targets for the treatment of PAH.



Paracellular epithelial sodium transport maximizes energy efficiency in the kidney
  By: Lei Pei, Glenn Solis, Mien T.X. Nguyen, Nikhil Kamat, Lynn Magenheimer, Min Zhuo, Jiahua Li, Joshua Curry, Alicia A. McDonough, Timothy A. Fields, William J. Welch, Alan S.L. Yu

Efficient oxygen utilization in the kidney may be supported by paracellular epithelial transport, a form of passive diffusion that is driven by preexisting transepithelial electrochemical gradients. Claudins are tight-junction transmembrane proteins that act as paracellular ion channels in epithelial cells. In the proximal tubule (PT) of the kidney, claudin-2 mediates paracellular sodium reabsorption. Here, we used murine models to investigate the role of claudin-2 in maintaining energy efficiency in the kidney. We found that claudin-2–null mice conserve sodium to the same extent as WT mice, even during profound dietary sodium depletion, as a result of the upregulation of transcellular Na-K-2Cl transport activity in the thick ascending limb of Henle. We hypothesized that shifting sodium transport to transcellular pathways would lead to increased whole-kidney oxygen consumption. Indeed, compared with control animals, oxygen consumption in the kidneys of claudin-2–null mice was markedly increased, resulting in medullary hypoxia. Furthermore, tubular injury in kidneys subjected to bilateral renal ischemia-reperfusion injury was more severe in the absence of claudin-2. Our results indicate that paracellular transport in the PT is required for efficient utilization of oxygen in the service of sodium transport. We speculate that paracellular permeability may have evolved as a general strategy in epithelial tissues to maximize energy efficiency.



Soluble fms-like tyrosine kinase 1 promotes angiotensin II sensitivity in preeclampsia
  By: Suzanne D. Burke, Zsuzsanna K. Zsengellér, Eliyahu V. Khankin, Agnes S. Lo, Augustine Rajakumar, Jennifer J. DuPont, Amy McCurley, Mary E. Moss, Dongsheng Zhang, Christopher D. Clark, Alice Wang, Ellen W. Seely, Peter M. Kang, Isaac E. Stillman, Iris Z. Jaffe, S. Ananth Karumanchi

Preeclampsia is a hypertensive disorder of pregnancy in which patients develop profound sensitivity to vasopressors, such as angiotensin II, and is associated with substantial morbidity for the mother and fetus. Enhanced vasoconstrictor sensitivity and elevations in soluble fms-like tyrosine kinase 1 (sFLT1), a circulating antiangiogenic protein, precede clinical signs and symptoms of preeclampsia. Here, we report that overexpression of sFlt1 in pregnant mice induced angiotensin II sensitivity and hypertension by impairing endothelial nitric oxide synthase (eNOS) phosphorylation and promoting oxidative stress in the vasculature. Administration of the NOS inhibitor l-NAME to pregnant mice recapitulated the angiotensin sensitivity and oxidative stress observed with sFlt1 overexpression. Sildenafil, an FDA-approved phosphodiesterase 5 inhibitor that enhances NO signaling, reversed sFlt1-induced hypertension and angiotensin II sensitivity in the preeclampsia mouse model. Sildenafil treatment also improved uterine blood flow, decreased uterine vascular resistance, and improved fetal weights in comparison with untreated sFlt1-expressing mice. Finally, sFLT1 protein expression inversely correlated with reductions in eNOS phosphorylation in placental tissue of human preeclampsia patients. These data support the concept that endothelial dysfunction due to high circulating sFLT1 may be the primary event leading to enhanced vasoconstrictor sensitivity that is characteristic of preeclampsia and suggest that targeting sFLT1-induced pathways may be an avenue for treating preeclampsia and improving fetal outcomes.



Persistent 7-tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions
  By: Martina Absinta, Pascal Sati, Matthew Schindler, Emily C. Leibovitch, Joan Ohayon, Tianxia Wu, Alessandro Meani, Massimo Filippi, Steven Jacobson, Irene C.M. Cortese, Daniel S. Reich

BACKGROUND. In some active multiple sclerosis (MS) lesions, a strong immune reaction at the lesion edge may contain growth and thereby isolate the lesion from the surrounding parenchyma. Our previous studies suggest that this process involves opening of the blood-brain barrier in capillaries at the lesion edge, seen on MRI as centripetal contrast enhancement and a colocalized phase rim. We hypothesized that using these features to characterize early lesion evolution will allow in vivo tracking of tissue degeneration and/or repair, thus improving the evaluation of potential therapies for chronic active lesions.

METHODS. Centripetally and centrifugally enhancing lesions were studied in 17 patients with MS using 7-tesla MRI. High-resolution, susceptibility-weighted, T1-weighted (before/after gadolinium), and dynamic contrast–enhanced scans were acquired at baseline and months 1, 3, 6, and 12. For each lesion, time evolution of the phase rim, lesion volume, and T1 hypointensity were assessed. In autopsies of 3 progressive MS cases, the histopathology of the phase rim was determined.

RESULTS. In centripetal lesions, a phase rim colocalized with initial contrast enhancement. In 12 of 22, this phase rim persisted after enhancement resolved. Compared with centripetal lesions with transient rim, those with persistent rim had less volume shrinkage and became more T1 hypointense between months 3 and 12. No centrifugal lesions developed phase rims at any time point. Pathologically, persistent rims corresponded to an iron-laden inflammatory myeloid cell population at the edge of chronic demyelinated lesions.

CONCLUSION. In early lesion evolution, a persistent phase rim in lesions that shrink least and become more T1 hypointense over time suggests that the rim might mark failure of early lesion repair and/or irreversible tissue damage. In later stages of MS, phase rim lesions continue to smolder, exerting detrimental effects on affected brain tissue.

TRIAL REGISTRATION. NCT00001248.

FUNDING. The Intramural Research Program of NINDS supported this study.





GABA interneurons mediate the rapid antidepressant-like effects of scopolamine
  By: Eric S. Wohleb, Min Wu, Danielle M. Gerhard, Seth R. Taylor, Marina R. Picciotto, Meenakshi Alreja, Ronald S. Duman

Major depressive disorder (MDD) is a recurring psychiatric illness that causes substantial health and socioeconomic burdens. Clinical reports have revealed that scopolamine, a nonselective muscarinic acetylcholine receptor antagonist, produces rapid antidepressant effects in individuals with MDD. Preclinical models suggest that these rapid antidepressant effects can be recapitulated with blockade of M1-type muscarinic acetylcholine receptors (M1-AChR); however, the cellular mechanisms underlying activity-dependent synaptic and behavioral responses to scopolamine have not been determined. Here, we demonstrate that the antidepressant-like effects of scopolamine are mediated by GABA interneurons in the medial prefrontal cortex (mPFC). Both GABAergic (GAD67+) interneurons and glutamatergic (CaMKII+) interneurons in the mPFC expressed M1-AChR. In mice, viral-mediated knockdown of M1-AChR specifically in GABAergic neurons, but not glutamatergic neurons, in the mPFC attenuated the antidepressant-like effects of scopolamine. Immunohistology and electrophysiology showed that somatostatin (SST) interneurons in the mPFC express M1-AChR at higher levels than parvalbumin interneurons. Moreover, knockdown of M1-AChR in SST interneurons in the mPFC demonstrated that M1-AChR expression in these neurons is required for the rapid antidepressant-like effects of scopolamine. These data indicate that SST interneurons in the mPFC are a promising pharmacological target for developing rapid-acting antidepressant therapies.



Eulogy for the clinical research center
  By: David G. Nathan, David M. Nathan

The extramural General Clinical Research Center (GCRC) program has been funded for more than 50 years, first by the National Center for Research Resources, NIH, and more recently as part of the Clinical Translational Science Award (CTSA) program through the newly formed National Center for Advancing Translation Sciences (NCATS). The GCRCs represent the federally funded laboratories that employ a highly trained cadre of research nurses, dietitians, and other support staff and in which generations of clinical investigators trained and performed groundbreaking human studies that advanced medical science and improved clinical care. Without the opportunity for adequate discussion, NCATS has now stopped funding these Research Centers. In this “eulogy,” we review the origins and history of the GCRCs, their contributions to the advancement of medicine, and the recent events that have essentially defunded them. We mourn their loss.



Angiopoietin receptor TEK mutations underlie primary congenital glaucoma with variable expressivity
  By: Tomokazu Souma, Stuart W. Tompson, Benjamin R. Thomson, Owen M. Siggs, Krishnakumar Kizhatil, Shinji Yamaguchi, Liang Feng, Vachiranee Limviphuvadh, Kristina N. Whisenhunt, Sebastian Maurer-Stroh, Tammy L. Yanovitch, Luba Kalaydjieva, Dimitar N. Azmanov, Simone Finzi, Lucia Mauri, Shahrbanou Javadiyan, Emmanuelle Souzeau, Tiger Zhou, Alex W. Hewitt, Bethany Kloss, Kathryn P. Burdon, David A. Mackey, Keri F. Allen, Jonathan B. Ruddle, Sing-Hui Lim, Steve Rozen, Khanh-Nhat Tran-Viet, Xiaorong Liu, Simon John, Janey L. Wiggs, Francesca Pasutto, Jamie E. Craig, Jing Jin, Susan E. Quaggin, Terri L. Young

Primary congenital glaucoma (PCG) is a devastating eye disease and an important cause of childhood blindness worldwide. In PCG, defects in the anterior chamber aqueous humor outflow structures of the eye result in elevated intraocular pressure (IOP); however, the genes and molecular mechanisms involved in the etiology of these defects have not been fully characterized. Previously, we observed PCG-like phenotypes in transgenic mice that lack functional angiopoietin-TEK signaling. Herein, we identified rare TEK variants in 10 of 189 unrelated PCG families and demonstrated that each mutation results in haploinsufficiency due to protein loss of function. Multiple cellular mechanisms were responsible for the loss of protein function resulting from individual TEK variants, including an absence of normal protein production, protein aggregate formation, enhanced proteasomal degradation, altered subcellular localization, and reduced responsiveness to ligand stimulation. Further, in mice, hemizygosity for Tek led to the formation of severely hypomorphic Schlemm’s canal and trabecular meshwork, as well as elevated IOP, demonstrating that anterior chamber vascular development is sensitive to Tek gene dosage and the resulting decrease in angiopoietin-TEK signaling. Collectively, these results identify TEK mutations in patients with PCG that likely underlie disease and are transmitted in an autosomal dominant pattern with variable expressivity.



Phosphorylation state–dependent modulation of spinal glycine receptors alleviates inflammatory pain
  By: Mario A. Acuña, Gonzalo E. Yévenes, William T. Ralvenius, Dietmar Benke, Alessandra Di Lio, Cesar O. Lara, Braulio Muñoz, Carlos F. Burgos, Gustavo Moraga-Cid, Pierre-Jean Corringer, Hanns Ulrich Zeilhofer

Diminished inhibitory neurotransmission in the superficial dorsal horn of the spinal cord is thought to contribute to chronic pain. In inflammatory pain, reductions in synaptic inhibition occur partially through prostaglandin E2- (PGE2-) and PKA-dependent phosphorylation of a specific subtype of glycine receptors (GlyRs) that contain α3 subunits. Here, we demonstrated that 2,6-di-tert-butylphenol (2,6-DTBP), a nonanesthetic propofol derivative, reverses inflammation-mediated disinhibition through a specific interaction with heteromeric αβGlyRs containing phosphorylated α3 subunits. We expressed mutant GlyRs in HEK293T cells, and electrophysiological analyses of these receptors showed that 2,6-DTBP interacted with a conserved phenylalanine residue in the membrane-associated stretch between transmembrane regions 3 and 4 of the GlyR α3 subunit. In native murine spinal cord tissue, 2,6-DTBP modulated synaptic, presumably αβ heteromeric, GlyRs only after priming with PGE2. This observation is consistent with results obtained from molecular modeling of the α-β subunit interface and suggests that in α3βGlyRs, the binding site is accessible to 2,6-DTBP only after PKA-dependent phosphorylation. In murine models of inflammatory pain, 2,6-DTBP reduced inflammatory hyperalgesia in an α3GlyR-dependent manner. Together, our data thus establish that selective potentiation of GlyR function is a promising strategy against chronic inflammatory pain and that, to our knowledge, 2,6-DTBP has a unique pharmacological profile that favors an interaction with GlyRs that have been primed by peripheral inflammation.



p66Shc regulates renal vascular tone in hypertension-induced nephropathy
  By: Bradley Miller, Oleg Palygin, Victoriya A. Rufanova, Andrew Chong, Jozef Lazar, Howard J. Jacob, David Mattson, Richard J. Roman, Jan M. Williams, Allen W. Cowley Jr., Aron M. Geurts, Alexander Staruschenko, John D. Imig, Andrey Sorokin

Renal preglomerular arterioles regulate vascular tone to ensure a large pressure gradient over short distances, a function that is extremely important for maintaining renal microcirculation. Regulation of renal microvascular tone is impaired in salt-sensitive (SS) hypertension–induced nephropathy, but the molecular mechanisms contributing to this impairment remain elusive. Here, we assessed the contribution of the SH2 adaptor protein p66Shc (encoded by Shc1) in regulating renal vascular tone and the development of renal vascular dysfunction associated with hypertension-induced nephropathy. We generated a panel of mutant rat strains in which specific modifications of Shc1 were introduced into the Dahl SS rats. In SS rats, overexpression of p66Shc was linked to increased renal damage. Conversely, deletion of p66Shc from these rats restored the myogenic responsiveness of renal preglomerular arterioles ex vivo and promoted cellular contraction in primary vascular smooth muscle cells (SMCs) that were isolated from renal vessels. In primary SMCs, p66Shc restricted the activation of transient receptor potential cation channels to attenuate cytosolic Ca2+ influx, implicating a mechanism by which overexpression of p66Shc impairs renal vascular reactivity. These results establish the adaptor protein p66Shc as a regulator of renal vascular tone and a driver of impaired renal vascular function in hypertension-induced nephropathy.



Clinical responses with T lymphocytes targeting malignancy-associated κ light chains
  By: Carlos A. Ramos, Barbara Savoldo, Vicky Torrano, Brandon Ballard, Huimin Zhang, Olga Dakhova, Enli Liu, George Carrum, Rammurti T. Kamble, Adrian P. Gee, Zhuyong Mei, Meng-Fen Wu, Hao Liu, Bambi Grilley, Cliona M. Rooney, Malcolm K. Brenner, Helen E. Heslop, Gianpietro Dotti

BACKGROUND. Treatment of B cell malignancies with adoptive transfer of T cells with a CD19-specific chimeric antigen receptor (CAR) shows remarkable clinical efficacy. However, long-term persistence of T cells targeting CD19, a pan–B cell marker, also depletes normal B cells and causes severe hypogammaglobulinemia. Here, we developed a strategy to target B cell malignancies more selectively by taking advantage of B cell light Ig chain restriction. We generated a CAR that is specific for the κ light chain (κ.CAR) and therefore recognizes κ-restricted cells and spares the normal B cells expressing the nontargeted λ light chain, thus potentially minimizing humoral immunity impairment.

METHODS. We conducted a phase 1 clinical trial and treated 16 patients with relapsed or refractory κ+ non-Hodgkin lymphoma/chronic lymphocytic leukemia (NHL/CLL) or multiple myeloma (MM) with autologous T cells genetically modified to express κ.CAR (κ.CARTs). Other treatments were discontinued in 11 of the 16 patients at least 4 weeks prior to T cell infusion. Six patients without lymphopenia received 12.5 mg/kg cyclophosphamide 4 days before κ.CART infusion (0.2 × 108 to 2 × 108 κ.CARTs/m2). No other lymphodepletion was used.

RESULTS. κ.CART expansion peaked 1–2 weeks after infusion, and cells remained detectable for more than 6 weeks. Of 9 patients with relapsed NHL or CLL, 2 entered complete remission after 2 and 3 infusions of κ.CARTs, and 1 had a partial response. Of 7 patients with MM, 4 had stable disease lasting 2–17 months. No toxicities attributable to κ.CARTs were observed.

CONCLUSION. κ.CART infusion is feasible and safe and can lead to complete clinical responses.

TRIAL REGISTRATION. ClinicalTrials.gov NCT00881920.

FUNDING. National Cancer Institute (NCI) grants 3P50CA126752 and 5P30CA125123 and Leukemia and Lymphoma Society (LLS) Specialized Centers of Research (SCOR) grant 7018.





Notch promotes tumor metastasis in a prostate-specific Pten-null mouse model
  By: Oh-Joon Kwon, Li Zhang, Jianghua Wang, Qingtai Su, Qin Feng, Xiang H.F. Zhang, Sendurai A. Mani, Robia Paulter, Chad J. Creighton, Michael M. Ittmann, Li Xin

Although Notch signaling is deregulated in prostate cancer, the role of this pathway in disease development and progression is not fully understood. Here, we analyzed 2 human prostate cancer data sets and found that higher Notch signaling correlates with increased metastatic potential and worse disease survival rates. We used the Pten-null mouse prostate cancer model to investigate the function of Notch signaling in the initiation and progression of prostate cancer. Disruption of the transcription factor RBPJ in Pten-null mice revealed that endogenous canonical Notch signaling is not required for disease initiation and progression. However, augmentation of Notch activity in this model promoted both proliferation and apoptosis of prostate epithelial cells, which collectively reduced the primary tumor burden. The increase in cellular apoptosis was linked to DNA damage–induced p53 activation. Despite a reduced primary tumor burden, Notch activation in Pten-null mice promoted epithelial-mesenchymal transition and FOXC2-dependent tumor metastases but did not confer resistance to androgen deprivation. Notch activation also resulted in transformation of seminal vesicle epithelial cells in Pten-null mice. Our study highlights a multifaceted role for Notch signaling in distinct aspects of prostate cancer biology and supports Notch as a potential therapeutic target for metastatic prostate cancer.



S6K1 regulates hematopoietic stem cell self-renewal and leukemia maintenance
  By: Joydeep Ghosh, Michihiro Kobayashi, Baskar Ramdas, Anindya Chatterjee, Peilin Ma, Raghuveer Singh Mali, Nadia Carlesso, Yan Liu, David R. Plas, Rebecca J. Chan, Reuben Kapur

Hyperactivation of the mTOR pathway impairs hematopoietic stem cell (HSC) functions and promotes leukemogenesis. mTORC1 and mTORC2 differentially control normal and leukemic stem cell functions. mTORC1 regulates p70 ribosomal protein S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E–binding (eIF4E-binding) protein 1 (4E-BP1), and mTORC2 modulates AKT activation. Given the extensive crosstalk that occurs between mTORC1 and mTORC2 signaling pathways, we assessed the role of the mTORC1 substrate S6K1 in the regulation of both normal HSC functions and in leukemogenesis driven by the mixed lineage leukemia (MLL) fusion oncogene MLL-AF9. We demonstrated that S6K1 deficiency impairs self-renewal of murine HSCs by reducing p21 expression. Loss of S6K1 also improved survival in mice transplanted with MLL-AF9–positive leukemic stem cells by modulating AKT and 4E-BP1 phosphorylation. Taken together, these results suggest that S6K1 acts through multiple targets of the mTOR pathway to promote self-renewal and leukemia progression. Given the recent interest in S6K1 as a potential therapeutic target in cancer, our results further support targeting this molecule as a potential strategy for treatment of myeloid malignancies.



CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer
  By: Kipp Weiskopf, Nadine S. Jahchan, Peter J. Schnorr, Sandra Cristea, Aaron M. Ring, Roy L. Maute, Anne K. Volkmer, Jens-Peter Volkmer, Jie Liu, Jing Shan Lim, Dian Yang, Garrett Seitz, Thuyen Nguyen, Di Wu, Kevin Jude, Heather Guerston, Amira Barkal, Francesca Trapani, Julie George, John T. Poirier, Eric E. Gardner, Linde A. Miles, Elisa de Stanchina, Shane M. Lofgren, Hannes Vogel, Monte M. Winslow, Caroline Dive, Roman K. Thomas, Charles M. Rudin, Matt van de Rijn, Ravindra Majeti, K. Christopher Garcia, Irving L. Weissman, Julien Sage

Small-cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer with limited treatment options. CD47 is a cell-surface molecule that promotes immune evasion by engaging signal-regulatory protein alpha (SIRPα), which serves as an inhibitory receptor on macrophages. Here, we found that CD47 is highly expressed on the surface of human SCLC cells; therefore, we investigated CD47-blocking immunotherapies as a potential approach for SCLC treatment. Disruption of the interaction of CD47 with SIRPα using anti-CD47 antibodies induced macrophage-mediated phagocytosis of human SCLC patient cells in culture. In a murine model, administration of CD47-blocking antibodies or targeted inactivation of the Cd47 gene markedly inhibited SCLC tumor growth. Furthermore, using comprehensive antibody arrays, we identified several possible therapeutic targets on the surface of SCLC cells. Antibodies to these targets, including CD56/neural cell adhesion molecule (NCAM), promoted phagocytosis in human SCLC cell lines that was enhanced when combined with CD47-blocking therapies. In light of recent clinical trials for CD47-blocking therapies in cancer treatment, these findings identify disruption of the CD47/SIRPα axis as a potential immunotherapeutic strategy for SCLC. This approach could enable personalized immunotherapeutic regimens in patients with SCLC and other cancers.



Glycolysis determines dichotomous regulation of T cell subsets in hypoxia
  By: Yang Xu, Arindam Chaudhury, Ming Zhang, Barbara Savoldo, Leonid S. Metelitsa, John Rodgers, Jason T. Yustein, Joel R. Neilson, Gianpietro Dotti

Hypoxia occurs in many pathological conditions, including chronic inflammation and tumors, and is considered to be an inhibitor of T cell function. However, robust T cell responses occur at many hypoxic inflammatory sites, suggesting that functions of some subsets are stimulated under low oxygen conditions. Here, we investigated how hypoxic conditions influence human T cell functions and found that, in contrast to naive and central memory T cells (TN and TCM), hypoxia enhances the proliferation, viability, and cytotoxic action of effector memory T cells (TEM). Enhanced TEM expansion in hypoxia corresponded to high hypoxia-inducible factor 1α (HIF1α) expression and glycolytic activity compared with that observed in TN and TCM. We determined that the glycolytic enzyme GAPDH negatively regulates HIF1A expression by binding to adenylate-uridylate–rich elements in the 3′-UTR region of HIF1A mRNA in glycolytically inactive TN and TCM. Conversely, active glycolysis with decreased GAPDH availability in TEM resulted in elevated HIF1α expression. Furthermore, GAPDH overexpression reduced HIF1α expression and impaired proliferation and survival of T cells in hypoxia, indicating that high glycolytic metabolism drives increases in HIF1α to enhance TEM function during hypoxia. This work demonstrates that glycolytic metabolism regulates the translation of HIF1A to determine T cell responses to hypoxia and implicates GAPDH as a potential mechanism for controlling T cell function in peripheral tissue.







Copyright © 2003-2016 USGuides.net, Inc. All Rights Reserved.