Information

  ·  What is an RSS Feed?
  ·  The History of RSS Feeds
  ·  RSS Versions and Formats

  ·  Latest News

RSS Feed Categories

  ·  Arts  (287)
  ·  Business  (167)
  ·  Computers  (218)
  ·  Education  (5)
  ·  Entertainment  (10)
  ·  Games  (24)
  ·  Health  (72)
  ·  Home  (51)
  ·  Kids and Teens  (7)
  ·  Lifestyle  (5)
  ·  News  (118)
  ·  Recreation  (125)
  ·  Reference  (47)
  ·  Regional  (1,284)
  ·  Science  (131)
  ·  Shopping  (6)
  ·  Society  (200)
  ·  Sports  (214)
  ·  World  (1,005)








 

Feed: JOURNAL OF CLINICAL INVESTIGATION -- CURRENT ISSUE

Journal of Clinical Investigation RSS feed -- Current issue


CRK proteins selectively regulate T cell migration into inflamed tissues
  By: Yanping Huang, Fiona Clarke, Mobin Karimi, Nathan H. Roy, Edward K. Williamson, Mariko Okumura, Kazuhiro Mochizuki, Emily J.H. Chen, Tae-Ju Park, Gudrun F. Debes, Yi Zhang, Tom Curran, Taku Kambayashi, Janis K. Burkhardt

Effector T cell migration into inflamed sites greatly exacerbates tissue destruction and disease severity in inflammatory diseases, including graft-versus-host disease (GVHD). T cell migration into such sites depends heavily on regulated adhesion and migration, but the signaling pathways that coordinate these functions downstream of chemokine receptors are largely unknown. Using conditional knockout mice, we found that T cells lacking the adaptor proteins CRK and CRK-like (CRKL) exhibit reduced integrin-dependent adhesion, chemotaxis, and diapedesis. Moreover, these two closely related proteins exhibited substantial functional redundancy, as ectopic expression of either protein rescued defects in T cells lacking both CRK and CRKL. We determined that CRK proteins coordinate with the RAP guanine nucleotide exchange factor C3G and the adhesion docking molecule CASL to activate the integrin regulatory GTPase RAP1. CRK proteins were required for effector T cell trafficking into sites of inflammation, but not for migration to lymphoid organs. In a murine bone marrow transplantation model, the differential migration of CRK/CRKL-deficient T cells resulted in efficient graft-versus-leukemia responses with minimal GVHD. Together, the results from our studies show that CRK family proteins selectively regulate T cell adhesion and migration at effector sites and suggest that these proteins have potential as therapeutic targets for preventing GVHD.



Recombinant human CD19L-sTRAIL effectively targets B cell precursor acute lymphoblastic leukemia
  By: Fatih M. Uckun, Dorothea E. Myers, Sanjive Qazi, Zahide Ozer, Rebecca Rose, Osmond J. D’Cruz, Hong Ma

Patients with B cell precursor acute lymphoblastic leukemia (BPL) respond well to chemotherapy at initial diagnosis; however, therapeutic options are limited for individuals with BPL who relapse. Almost all BPL cells express CD19, and we recently cloned the gene encoding a natural ligand of the human CD19 receptor (CD19L). We hypothesized that fusion of CD19L to the soluble extracellular domain of proapoptotic TNF-related apoptosis-inducing ligand (sTRAIL) would markedly enhance the potency of sTRAIL and specifically induce BPL cell apoptosis due to membrane anchoring of sTRAIL and simultaneous activation of the CD19 and TRAIL receptor (TRAIL-R) apoptosis signaling pathways. Here, we demonstrate that recombinant human CD19L-sTRAIL was substantially more potent than sTRAIL and induced apoptosis in primary leukemia cells taken directly from BPL patients. CD19L-sTRAIL effectively targeted and eliminated in vivo clonogenic BPL xenograft cells, even at femtomolar-picomolar concentrations. In mice, CD19L-sTRAIL exhibited a more favorable pharmacokinetic (PK) profile than sTRAIL and was nontoxic at doses ranging from 32 fmol/kg to 3.2 pmol/kg. CD19L-sTRAIL showed potent in vivo antileukemic activity in NOD/SCID mouse xenograft models of relapsed and chemotherapy-resistant BPL at nontoxic fmol/kg dose levels. Together, these results suggest that recombinant human CD19L-sTRAIL has clinical potential as a biotherapeutic agent against BPL.



Oxidative stress promotes pathologic polyploidization in nonalcoholic fatty liver disease
  By: Géraldine Gentric, Vanessa Maillet, Valérie Paradis, Dominique Couton, Antoine L’Hermitte, Ganna Panasyuk, Bernard Fromenty, Séverine Celton-Morizur, Chantal Desdouets

Polyploidization is one of the most dramatic changes that can occur in the genome. In the liver, physiological polyploidization events occur during both liver development and throughout adult life. Here, we determined that a pathological polyploidization takes place in nonalcoholic fatty liver disease (NAFLD), a widespread hepatic metabolic disorder that is believed to be a risk factor for hepatocellular carcinoma (HCC). In murine models of NAFLD, the parenchyma of fatty livers displayed alterations of the polyploidization process, including the presence of a large proportion of highly polyploid mononuclear cells, which are rarely observed in normal hepatic parenchyma. Biopsies from patients with nonalcoholic steatohepatitis (NASH) revealed the presence of alterations in hepatocyte ploidy compared with tissue from control individuals. Hepatocytes from NAFLD mice revealed that progression through the S/G2 phases of the cell cycle was inefficient. This alteration was associated with activation of a G2/M DNA damage checkpoint, which prevented activation of the cyclin B1/CDK1 complex. Furthermore, we determined that oxidative stress promotes the appearance of highly polyploid cells, and antioxidant-treated NAFLD hepatocytes resumed normal cell division and returned to a physiological state of polyploidy. Collectively, these findings indicate that oxidative stress promotes pathological polyploidization and suggest that this is an early event in NAFLD that may contribute to HCC development.



Evaluation of noncytotoxic DNMT1-depleting therapy in patients with myelodysplastic syndromes
  By: Yogen Saunthararajah, Mikkael Sekeres, Anjali Advani, Reda Mahfouz, Lisa Durkin, Tomas Radivoyevitch, Ricki Englehaupt, Joy Juersivich, Kathleen Cooper, Holleh Husseinzadeh, Bartlomiej Przychodzen, Matthew Rump, Sean Hobson, Marc Earl, Ronald Sobecks, Robert Dean, Frederic Reu, Ramon Tiu, Betty Hamilton, Edward Copelan, Alan Lichtin, Eric Hsi, Matt Kalaycio, Jaroslaw Maciejewski

BACKGROUND. Mutational inactivation in cancer of key apoptotic pathway components, such as TP53/p53, undermines cytotoxic therapies that aim to increase apoptosis. Accordingly, TP53 mutations are reproducibly associated with poor treatment outcomes. Moreover, cytotoxic treatments destroy normal stem cells with intact p53 systems, a problem especially for myeloid neoplasms, as these cells reverse the low blood counts that cause morbidity and death. Preclinical studies suggest that noncytotoxic concentrations of the DNA methyltransferase 1 (DNMT1) inhibitor decitabine produce p53-independent cell-cycle exits by reversing aberrant epigenetic repression of proliferation-terminating (MYC-antagonizing) differentiation genes in cancer cells.

METHODS. In this clinical trial, patients with myelodysplastic syndrome (n = 25) received reduced decitabine dosages (0.1–0.2 mg/kg/day compared with the FDA-approved 20–45 mg/m2/day dosage, a 75%–90% reduction) to avoid cytotoxicity. These well-tolerated doses were frequently administered 1–3 days per week, instead of pulse cycled for 3 to 5 days over a 4- to 6-week period, to increase the probability that cancer S-phase entries would coincide with drug exposure, which is required for S-phase–dependent DNMT1 depletion.

RESULTS. The median subject age was 73 years (range, 46–85 years), 9 subjects had relapsed disease or were refractory to 5-azacytidine and/or lenalidomide, and 3 had received intensive chemoradiation to treat other cancers. Adverse events were related to neutropenia present at baseline: neutropenic fever (13 of 25 subjects) and septic death (1 of 25 subjects). Blood count improvements meeting the International Working Group criteria for response occurred in 11 of 25 (44%) subjects and were highly durable. Treatment-induced freedom from transfusion lasted a median of 1,025 days (range, 186–1,152 days; 3 ongoing), and 20% of subjects were treated for more than 3 years. Mutations and/or deletions of key apoptosis genes were frequent (present in 55% of responders and in 36% of nonresponders). Noncytotoxic DNMT1 depletion was confirmed by serial BM γ-H2AX (DNA repair/damage marker) and DNMT1 analyses. MYC master oncoprotein levels were markedly decreased.

CONCLUSION. Decitabine regimens can be redesigned to minimize cytotoxicity and increase exposure time for DNMT1 depletion, to safely and effectively circumvent mutational apoptotic defects.

TRIAL REGISTRATION. Clinicaltrials.gov NCT01165996.

FUNDING. NIH (R01CA138858, CA043703); Department of Defense (PR081404); Clinical and Translational Science Award (CTSA) (UL1RR024989); and the Leukemia and Lymphoma Society (Translational Research Program).





Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus
  By: Marta Byrska-Bishop, Daniel VanDorn, Amy E. Campbell, Marisol Betensky, Philip R. Arca, Yu Yao, Paul Gadue, Fernando F. Costa, Richard L. Nemiroff, Gerd A. Blobel, Deborah L. French, Ross C. Hardison, Mitchell J. Weiss, Stella T. Chou

Germline GATA1 mutations that result in the production of an amino-truncated protein termed GATA1s (where s indicates short) cause congenital hypoplastic anemia. In patients with trisomy 21, similar somatic GATA1s-producing mutations promote transient myeloproliferative disease and acute megakaryoblastic leukemia. Here, we demonstrate that induced pluripotent stem cells (iPSCs) from patients with GATA1-truncating mutations exhibit impaired erythroid potential, but enhanced megakaryopoiesis and myelopoiesis, recapitulating the major phenotypes of the associated diseases. Similarly, in developmentally arrested GATA1-deficient murine megakaryocyte-erythroid progenitors derived from murine embryonic stem cells (ESCs), expression of GATA1s promoted megakaryopoiesis, but not erythropoiesis. Transcriptome analysis revealed a selective deficiency in the ability of GATA1s to activate erythroid-specific genes within populations of hematopoietic progenitors. Although its DNA-binding domain was intact, chromatin immunoprecipitation studies showed that GATA1s binding at specific erythroid regulatory regions was impaired, while binding at many nonerythroid sites, including megakaryocytic and myeloid target genes, was normal. Together, these observations indicate that lineage-specific GATA1 cofactor associations are essential for normal chromatin occupancy and provide mechanistic insights into how GATA1s mutations cause human disease. More broadly, our studies underscore the value of ESCs and iPSCs to recapitulate and study disease phenotypes.



MicroRNA-21 promotes Th17 differentiation and mediates experimental autoimmune encephalomyelitis
  By: Gopal Murugaiyan, Andre Pires da Cunha, Amrendra K. Ajay, Nicole Joller, Lucien P. Garo, Sowmiya Kumaradevan, Nir Yosef, Vishal S. Vaidya, Howard L. Weiner

Accumulation of IL-17–producing Th17 cells is associated with the development of multiple autoimmune diseases; however, the contribution of microRNA (miRNA) pathways to the intrinsic control of Th17 development remains unclear. Here, we demonstrated that miR-21 expression is elevated in Th17 cells and that mice lacking miR-21 have a defect in Th17 differentiation and are resistant to experimental autoimmune encephalomyelitis (EAE). Furthermore, we determined that miR-21 promotes Th17 differentiation by targeting and depleting SMAD-7, a negative regulator of TGF-β signaling. Moreover, the decreases in Th17 differentiation in miR-21–deficient T cells were associated with defects in SMAD-2/3 activation and IL-2 suppression. Finally, we found that treatment of WT mice with an anti–miR-21 oligonucleotide reduced the clinical severity of EAE, which was associated with a decrease in Th17 cells. Thus, we have characterized a T cell–intrinsic miRNA pathway that enhances TGF-β signaling, limits the autocrine inhibitory effects of IL-2, and thereby promotes Th17 differentiation and autoimmunity.



Cytosolic HMGB1 controls the cellular autophagy/apoptosis checkpoint during inflammation
  By: Xiaorong Zhu, Jeannette S. Messer, Yunwei Wang, Fanfei Lin, Candace M. Cham, Jonathan Chang, Timothy R. Billiar, Michael T. Lotze, David L. Boone, Eugene B. Chang

The intracellular protein HMGB1 is released from cells and acts as a damage-associated molecular pattern molecule during many diseases, including inflammatory bowel disease (IBD); however, the intracellular function of HMGB1 during inflammation is poorly understood. Here, we demonstrated that cytosolic HMGB1 regulates apoptosis by protecting the autophagy proteins beclin 1 and ATG5 from calpain-mediated cleavage during inflammation. Colitis in mice with an intestinal epithelial cell–specific Hmgb1 deletion and patients with IBD were both characterized by increased calpain activation, beclin 1 and ATG5 cleavage, and intestinal epithelial cell (IEC) death compared with controls. In vitro cleavage assays and studies of enteroids verified that HMGB1 protects beclin 1 and ATG5 from calpain-mediated cleavage events that generate proapoptotic protein fragments. Together, our results indicate that HMGB1 is essential for mitigating the extent and severity of inflammation-associated cellular injury by controlling the switch between the proautophagic and proapoptotic functions of beclin 1 and ATG5 during inflammation. Moreover, these studies demonstrate that HMGB1 is pivotal for reducing tissue injury in IBD and other complex inflammatory disorders.



FOXP3+ regulatory T cell development and function require histone/protein deacetylase 3
  By: Liqing Wang, Yujie Liu, Rongxiang Han, Ulf H. Beier, Tricia R. Bhatti, Tatiana Akimova, Mark I. Greene, Scott W. Hiebert, Wayne W. Hancock

Treg dysfunction is associated with a variety of inflammatory diseases. Treg populations are defined by expression of the oligomeric transcription factor FOXP3 and inability to produce IL-2, a cytokine required for T cell maintenance and survival. FOXP3 activity is regulated post-translationally by histone/protein acetyltransferases and histone/protein deacetylases (HDACs). Here, we determined that HDAC3 mediates both the development and function of the two main Treg subsets, thymus-derived Tregs and induced Tregs (iTregs). We determined that HDAC3 and FOXP3 physically interact and that HDAC3 expression markedly reduces Il2 promoter activity. In murine models, conditional deletion of Hdac3 during thymic Treg development restored Treg production of IL-2 and blocked the suppressive function of Tregs. HDAC3-deficient mice died from autoimmunity by 4–6 weeks of age; however, injection of WT FOXP3+ Tregs prolonged survival. Adoptive transfer of Hdac3-deficient Tregs, unlike WT Tregs, did not control T cell proliferation in naive mice and did not prevent allograft rejection or colitis. HDAC3 also regulated the development of iTregs, as HDAC3-deficient conventional T cells were not converted into iTregs under polarizing conditions and produced large amounts of IL-2, IL-6, and IL-17. We conclude that HDAC3 is essential for the normal development and suppressive functions of thymic and peripheral FOXP3+ Tregs.



Human-derived neural progenitors functionally replace astrocytes in adult mice
  By: Hong Chen, Kun Qian, Wei Chen, Baoyang Hu, Lisle W. Blackbourn IV, Zhongwei Du, Lixiang Ma, Huisheng Liu, Karla M. Knobel, Melvin Ayala, Su-Chun Zhang

Astrocytes are integral components of the homeostatic neural network as well as active participants in pathogenesis of and recovery from nearly all neurological conditions. Evolutionarily, compared with lower vertebrates and nonhuman primates, humans have an increased astrocyte-to-neuron ratio; however, a lack of effective models has hindered the study of the complex roles of human astrocytes in intact adult animals. Here, we demonstrated that after transplantation into the cervical spinal cords of adult mice with severe combined immunodeficiency (SCID), human pluripotent stem cell–derived (PSC-derived) neural progenitors migrate a long distance and differentiate to astrocytes that nearly replace their mouse counterparts over a 9-month period. The human PSC-derived astrocytes formed networks through their processes, encircled endogenous neurons, and extended end feet that wrapped around blood vessels without altering locomotion behaviors, suggesting structural, and potentially functional, integration into the adult mouse spinal cord. Furthermore, in SCID mice transplanted with neural progenitors derived from induced PSCs from patients with ALS, astrocytes were generated and distributed to a similar degree as that seen in mice transplanted with healthy progenitors; however, these mice exhibited motor deficit, highlighting functional integration of the human-derived astrocytes. Together, these results indicate that this chimeric animal model has potential for further investigating the roles of human astrocytes in disease pathogenesis and repair.



Inhibition of IRAK1/4 sensitizes T cell acute lymphoblastic leukemia to chemotherapies
  By: Zhaoyang Li, Kenisha Younger, Ronald Gartenhaus, Ann Mary Joseph, Fang Hu, Maria R. Baer, Patrick Brown, Eduardo Davila

Signaling via the MyD88/IRAK pathway in T cells is indispensable for cell survival; however, it is not known whether this pathway functions in the progression of T acute lymphoblastic leukemia (T-ALL). Here, we determined that compared with thymic and peripheral T cells, T-ALL cells from patients have elevated levels of IRAK1 and IRAK4 mRNA as well as increased total and phosphorylated protein. Targeted inhibition of IRAK1 and IRAK4, either with shRNA or with a pharmacological IRAK1/4 inhibitor, dramatically impeded proliferation of T-ALL cells isolated from patients and T-ALL cells in a murine leukemia model; however, IRAK1/4 inhibition had little effect on cell death. We screened several hundred FDA-approved compounds and identified a set of drugs that had enhanced cytotoxic activity when combined with IRAK inhibition. Administration of an IRAK1/4 inhibitor or IRAK knockdown in combination with either ABT-737 or vincristine markedly reduced leukemia burden in mice and prolonged survival. IRAK1/4 signaling activated the E3 ubiquitin ligase TRAF6, increasing K63-linked ubiquitination and enhancing stability of the antiapoptotic protein MCL1; therefore, IRAK inhibition reduced MCL1 stability and sensitized T-ALL to combination therapy. These studies demonstrate that IRAK1/4 signaling promotes T-ALL progression through stabilization of MCL1 and suggest that impeding this pathway has potential as a therapeutic strategy to enhance chemotherapeutic efficacy.



Antigen expression determines adenoviral vaccine potency independent of IFN and STING signaling
  By: Kylie M. Quinn, Daniel E. Zak, Andreia Costa, Ayako Yamamoto, Kathrin Kastenmuller, Brenna J. Hill, Geoffrey M. Lynn, Patricia A. Darrah, Ross W.B. Lindsay, Lingshu Wang, Cheng Cheng, Alfredo Nicosia, Antonella Folgori, Stefano Colloca, Riccardo Cortese, Emma Gostick, David A. Price, Jason G.D. Gall, Mario Roederer, Alan Aderem, Robert A. Seder

Recombinant adenoviral vectors (rAds) are lead vaccine candidates for protection against a variety of pathogens, including Ebola, HIV, tuberculosis, and malaria, due to their ability to potently induce T cell immunity in humans. However, the ability to induce protective cellular immunity varies among rAds. Here, we assessed the mechanisms that control the potency of CD8 T cell responses in murine models following vaccination with human-, chimpanzee-, and simian-derived rAds encoding SIV-Gag antigen (Ag). After rAd vaccination, we quantified Ag expression and performed expression profiling of innate immune response genes in the draining lymph node. Human-derived rAd5 and chimpanzee-derived chAd3 were the most potent rAds and induced high and persistent Ag expression with low innate gene activation, while less potent rAds induced less Ag expression and robustly induced innate immunity genes that were primarily associated with IFN signaling. Abrogation of type I IFN or stimulator of IFN genes (STING) signaling increased Ag expression and accelerated CD8 T cell response kinetics but did not alter memory responses or protection. These findings reveal that the magnitude of rAd-induced memory CD8 T cell immune responses correlates with Ag expression but is independent of IFN and STING and provide criteria for optimizing protective CD8 T cell immunity with rAd vaccines.



β Cell death and dysfunction during type 1 diabetes development in at-risk individuals
  By: Kevan C. Herold, Sahar Usmani-Brown, Tara Ghazi, Jasmin Lebastchi, Craig A. Beam, Melena D. Bellin, Michel Ledizet, Jay M. Sosenko, Jeffrey P. Krischer, Jerry P. Palmer

Role of the funding source: Funding from the NIH was used for support of the participating clinical centers and the coordinating center. The funding source did not participate in the collection or the analysis of the data.

BACKGROUND. The β cell killing that characterizes type 1 diabetes (T1D) is thought to begin years before patients present clinically with metabolic decompensation; however, this primary pathologic process of the disease has not been measured.

METHODS. Here, we measured β cell death with an assay that detects β cell–derived unmethylated insulin (INS) DNA. Using this assay, we performed an observational study of 50 participants from 2 cohorts at risk for developing T1D from the TrialNet Pathway to Prevention study and of 4 subjects who received islet autotransplants.

RESULTS. In at-risk subjects, those who progressed to T1D had average levels of unmethylated INS DNA that were elevated modestly compared with those of healthy control subjects. In at-risk individuals that progressed to T1D, the observed increases in unmethylated INS DNA were associated with decreases in insulin secretion, indicating that the changes in unmethylated INS DNA are indicative of β cell killing. Subjects at high risk for T1D had levels of unmethylated INS DNA that were higher than those of healthy controls and higher than the levels of unmethylated INS DNA in the at-risk progressor and at-risk nonprogressor groups followed for 4 years. Evaluation of insulin secretory kinetics also distinguished high-risk subjects who progressed to overt disease from those who did not.

CONCLUSION. We conclude that a blood test that measures unmethylated INS DNA serves as a marker of active β cell killing as the result of T1D-associated autoimmunity. Together, the data support the concept that β cell killing occurs sporadically during the years prior to diagnosis of T1D and is more intense in the peridiagnosis period.

TRIAL REGISTRATION. Clinical Trials.gov NCT00097292.

FUNDING. Funding was from the NIH, the Juvenile Diabetes Research Foundation, and the American Diabetes Association.





Defective goblet cell exocytosis contributes to murine cystic fibrosis–associated intestinal disease
  By: Jinghua Liu, Nancy M. Walker, Akifumi Ootani, Ashlee M. Strubberg, Lane L. Clarke

Cystic fibrosis (CF) intestinal disease is associated with the pathological manifestation mucoviscidosis, which is the secretion of tenacious, viscid mucus that plugs ducts and glands of epithelial-lined organs. Goblet cells are the principal cell type involved in exocytosis of mucin granules; however, little is known about the exocytotic process of goblet cells in the CF intestine. Using intestinal organoids from a CF mouse model, we determined that CF goblet cells have altered exocytotic dynamics, which involved intrathecal granule swelling that was abruptly followed by incomplete release of partially decondensated mucus. Some CF goblet cells exhibited an ectopic granule location and distorted cellular morphology, a phenotype that is consistent with retrograde intracellular granule movement during exocytosis. Increasing the luminal concentration of bicarbonate, which mimics CF transmembrane conductance regulator–mediated anion secretion, increased spontaneous degranulation in WT goblet cells and improved exocytotic dynamics in CF goblet cells; however, there was still an apparent incoordination between granule decondensation and exocytosis in the CF goblet cells. Compared with those within WT goblet cells, mucin granules within CF goblet cells had an alkaline pH, which may adversely affect the polyionic composition of the mucins. Together, these findings indicate that goblet cell dysfunction is an epithelial-autonomous defect in the CF intestine that likely contributes to the pathology of mucoviscidosis and the intestinal manifestations of obstruction and inflammation.



Functional variants of POC5 identified in patients with idiopathic scoliosis
  By: Shunmoogum A. Patten, Patricia Margaritte-Jeannin, Jean-Claude Bernard, Eudeline Alix, Audrey Labalme, Alicia Besson, Simon L. Girard, Khaled Fendri, Nicolas Fraisse, Bernard Biot, Coline Poizat, Amandine Campan-Fournier, Kariman Abelin-Genevois, Vincent Cunin, Charlotte Zaouter, Meijiang Liao, Raphaelle Lamy, Gaetan Lesca, Rita Menassa, Charles Marcaillou, Melanie Letexier, Damien Sanlaville, Jerome Berard, Guy A. Rouleau, Françoise Clerget-Darpoux, Pierre Drapeau, Florina Moldovan, Patrick Edery

Idiopathic scoliosis (IS) is a spine deformity that affects approximately 3% of the population. The underlying causes of IS are not well understood, although there is clear evidence that there is a genetic component to the disease. Genetic mapping studies suggest high genetic heterogeneity, but no IS disease-causing gene has yet been identified. Here, genetic linkage analyses combined with exome sequencing identified a rare missense variant (p.A446T) in the centriolar protein gene POC5 that cosegregated with the disease in a large family with multiple members affected with IS. Subsequently, the p.A446T variant was found in an additional set of families with IS and in an additional 3 cases of IS. Moreover, POC5 variant p.A455P was present and linked to IS in one family and another rare POC5 variant (p.A429V) was identified in an additional 5 cases of IS. In a zebrafish model, expression of any of the 3 human IS-associated POC5 variant mRNAs resulted in spine deformity, without affecting other skeletal structures. Together, these findings indicate that mutations in the POC5 gene contribute to the occurrence of IS.



Coactivator SRC-2–dependent metabolic reprogramming mediates prostate cancer survival and metastasis
  By: Subhamoy Dasgupta, Nagireddy Putluri, Weiwen Long, Bin Zhang, Jianghua Wang, Akash K. Kaushik, James M. Arnold, Salil K. Bhowmik, Erin Stashi, Christine A. Brennan, Kimal Rajapakshe, Cristian Coarfa, Nicholas Mitsiades, Michael M. Ittmann, Arul M. Chinnaiyan, Arun Sreekumar, Bert W. O’Malley

Metabolic pathway reprogramming is a hallmark of cancer cell growth and survival and supports the anabolic and energetic demands of these rapidly dividing cells. The underlying regulators of the tumor metabolic program are not completely understood; however, these factors have potential as cancer therapy targets. Here, we determined that upregulation of the oncogenic transcriptional coregulator steroid receptor coactivator 2 (SRC-2), also known as NCOA2, drives glutamine-dependent de novo lipogenesis, which supports tumor cell survival and eventual metastasis. SRC-2 was highly elevated in a variety of tumors, especially in prostate cancer, in which SRC-2 was amplified and overexpressed in 37% of the metastatic tumors evaluated. In prostate cancer cells, SRC-2 stimulated reductive carboxylation of α-ketoglutarate to generate citrate via retrograde TCA cycling, promoting lipogenesis and reprogramming of glutamine metabolism. Glutamine-mediated nutrient signaling activated SRC-2 via mTORC1-dependent phosphorylation, which then triggered downstream transcriptional responses by coactivating SREBP-1, which subsequently enhanced lipogenic enzyme expression. Metabolic profiling of human prostate tumors identified a massive increase in the SRC-2–driven metabolic signature in metastatic tumors compared with that seen in localized tumors, further implicating SRC-2 as a prominent metabolic coordinator of cancer metastasis. Moreover, SRC-2 inhibition in murine models severely attenuated the survival, growth, and metastasis of prostate cancer. Together, these results suggest that the SRC-2 pathway has potential as a therapeutic target for prostate cancer.



Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma
  By: Yulong Chen, Masahiko Terajima, Yanan Yang, Li Sun, Young-Ho Ahn, Daniela Pankova, Daniel S. Puperi, Takeshi Watanabe, Min P. Kim, Shanda H. Blackmon, Jaime Rodriguez, Hui Liu, Carmen Behrens, Ignacio I. Wistuba, Rosalba Minelli, Kenneth L. Scott, Johannah Sanchez-Adams, Farshid Guilak, Debananda Pati, Nishan Thilaganathan, Alan R. Burns, Chad J. Creighton, Elisabeth D. Martinez, Tomasz Zal, K. Jane Grande-Allen, Mitsuo Yamauchi, Jonathan M. Kurie

Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde–derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde–derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma.



Lymphocyte adaptor protein LNK deficiency exacerbates hypertension and end-organ inflammation
  By: Mohamed A. Saleh, William G. McMaster, Jing Wu, Allison E. Norlander, Samuel A. Funt, Salim R. Thabet, Annet Kirabo, Liang Xiao, Wei Chen, Hana A. Itani, Danielle Michell, Tianxiao Huan, Yahua Zhang, Satoshi Takaki, Jens Titze, Daniel Levy, David G. Harrison, Meena S. Madhur

The lymphocyte adaptor protein LNK (also known as SH2B3) is primarily expressed in hematopoietic and endothelial cells, where it functions as a negative regulator of cytokine signaling and cell proliferation. Single-nucleotide polymorphisms in the gene encoding LNK are associated with autoimmune and cardiovascular disorders; however, it is not known how LNK contributes to hypertension. Here, we determined that loss of LNK exacerbates angiotensin II–induced (Ang II–induced) hypertension and the associated renal and vascular dysfunction. At baseline, kidneys from Lnk–/– mice exhibited greater levels of inflammation, oxidative stress, and glomerular injury compared with WT animals, and these parameters were further exacerbated by Ang II infusion. Aortas from Lnk–/– mice exhibited enhanced inflammation, reduced nitric oxide levels, and impaired endothelial-dependent relaxation. Bone marrow transplantation studies demonstrated that loss of LNK in hematopoietic cells is primarily responsible for the observed renal and vascular inflammation and predisposition to hypertension. Ang II infusion increased IFN-γ–producing CD8+ T cells in the spleen and kidneys of Lnk–/– mice compared with WT mice. Moreover, IFN-γ deficiency resulted in blunted hypertension in response to Ang II infusion. Together, these results suggest that LNK is a potential therapeutic target for hypertension and its associated renal and vascular sequela.



Gut chemosensing mechanisms
  By: Arianna Psichas, Frank Reimann, Fiona M. Gribble

The enteroendocrine system is the primary sensor of ingested nutrients and is responsible for secreting an array of gut hormones, which modulate multiple physiological responses including gastrointestinal motility and secretion, glucose homeostasis, and appetite. This Review provides an up-to-date synopsis of the molecular mechanisms underlying enteroendocrine nutrient sensing and highlights our current understanding of the neuro-hormonal regulation of gut hormone secretion, including the interaction between the enteroendocrine system and the enteric nervous system. It is hoped that a deeper understanding of how these systems collectively regulate postprandial physiology will further facilitate the development of novel therapeutic strategies.



Musashi2 sustains the mixed-lineage leukemia–driven stem cell regulatory program
  By: Sun-Mi Park, Mithat Gönen, Ly Vu, Gerard Minuesa, Patrick Tivnan, Trevor S. Barlowe, James Taggart, Yuheng Lu, Raquel P. Deering, Nir Hacohen, Maria E. Figueroa, Elisabeth Paietta, Hugo F. Fernandez, Martin S. Tallman, Ari Melnick, Ross Levine, Christina Leslie, Christopher J. Lengner, Michael G. Kharas

Leukemia stem cells (LSCs) are found in most aggressive myeloid diseases and contribute to therapeutic resistance. Leukemia cells exhibit a dysregulated developmental program as the result of genetic and epigenetic alterations. Overexpression of the RNA-binding protein Musashi2 (MSI2) has been previously shown to predict poor survival in leukemia. Here, we demonstrated that conditional deletion of Msi2 in the hematopoietic compartment results in delayed leukemogenesis, reduced disease burden, and a loss of LSC function in a murine leukemia model. Gene expression profiling of these Msi2-deficient animals revealed a loss of the hematopoietic/leukemic stem cell self-renewal program and an increase in the differentiation program. In acute myeloid leukemia patients, the presence of a gene signature that was similar to that observed in Msi2-deficent murine LSCs correlated with improved survival. We determined that MSI2 directly maintains the mixed-lineage leukemia (MLL) self-renewal program by interacting with and retaining efficient translation of Hoxa9, Myc, and Ikzf2 mRNAs. Moreover, depletion of MLL target Ikzf2 in LSCs reduced colony formation, decreased proliferation, and increased apoptosis. Our data provide evidence that MSI2 controls efficient translation of the oncogenic LSC self-renewal program and suggest MSI2 as a potential therapeutic target for myeloid leukemia.



Annexin A1–containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair
  By: Giovanna Leoni, Philipp-Alexander Neumann, Nazila Kamaly, Miguel Quiros, Hikaru Nishio, Hefin R. Jones, Ronen Sumagin, Roland S. Hilgarth, Ashfaqul Alam, Gabrielle Fredman, Ioannis Argyris, Emile Rijcken, Dennis Kusters, Chris Reutelingsperger, Mauro Perretti, Charles A. Parkos, Omid C. Farokhzad, Andrew S. Neish, Asma Nusrat

Epithelial restitution is an essential process that is required to repair barrier function at mucosal surfaces following injury. Prolonged breaches in epithelial barrier function result in inflammation and further damage; therefore, a better understanding of the epithelial restitution process has potential for improving the development of therapeutics. In this work, we demonstrate that endogenous annexin A1 (ANXA1) is released as a component of extracellular vesicles (EVs) derived from intestinal epithelial cells, and these ANXA1-containing EVs activate wound repair circuits. Compared with healthy controls, patients with active inflammatory bowel disease had elevated levels of secreted ANXA1-containing EVs in sera, indicating that ANXA1-containing EVs are systemically distributed in response to the inflammatory process and could potentially serve as a biomarker of intestinal mucosal inflammation. Local intestinal delivery of an exogenous ANXA1 mimetic peptide (Ac2-26) encapsulated within targeted polymeric nanoparticles (Ac2-26 Col IV NPs) accelerated healing of murine colonic wounds after biopsy-induced injury. Moreover, one-time systemic administration of Ac2-26 Col IV NPs accelerated recovery following experimentally induced colitis. Together, our results suggest that local delivery of proresolving peptides encapsulated within nanoparticles may represent a potential therapeutic strategy for clinical situations characterized by chronic mucosal injury, such as is seen in patients with IBD.







Copyright © 2003-2015 USGuides.net, Inc. All Rights Reserved.