·  What is an RSS Feed?
  ·  The History of RSS Feeds
  ·  RSS Versions and Formats

  ·  Latest News

RSS Feed Categories

  ·  Arts  (287)
  ·  Business  (167)
  ·  Computers  (218)
  ·  Education  (5)
  ·  Entertainment  (10)
  ·  Games  (24)
  ·  Health  (72)
  ·  Home  (51)
  ·  Kids and Teens  (7)
  ·  Lifestyle  (5)
  ·  News  (118)
  ·  Recreation  (125)
  ·  Reference  (47)
  ·  Regional  (1,284)
  ·  Science  (131)
  ·  Shopping  (6)
  ·  Society  (200)
  ·  Sports  (214)
  ·  World  (1,005)



The Journal of Clinical Investigation RSS feed -- Current issue

Public T cell receptors confer high-avidity CD4 responses to HIV controllers
  By: Daniela Benati, Moran Galperin, Olivier Lambotte, Stéphanie Gras, Annick Lim, Madhura Mukhopadhyay, Alexandre Nouël, Kristy-Anne Campbell, Brigitte Lemercier, Mathieu Claireaux, Samia Hendou, Pierre Lechat, Pierre de Truchis, Faroudy Boufassa, Jamie Rossjohn, Jean-François Delfraissy, Fernando Arenzana-Seisdedos, Lisa A. Chakrabarti

The rare patients who are able to spontaneously control HIV replication in the absence of therapy show signs of a particularly efficient cellular immune response. To identify the molecular determinants that underlie this response, we characterized the T cell receptor (TCR) repertoire directed at Gag293, the most immunoprevalent CD4 epitope in the HIV-1 capsid. HIV controllers from the ANRS CODEX cohort showed a highly skewed TCR repertoire that was characterized by a predominance of TRAV24 and TRBV2 variable genes, shared CDR3 motifs, and a high frequency of public clonotypes. The most prevalent public clonotypes generated TCRs with affinities at the higher end of values reported for naturally occurring TCRs. The high-affinity Gag293-specific TCRs were cross-restricted by up to 5 distinct HLA-DR alleles, accounting for the expression of these TCRs in HIV controllers of diverse genetic backgrounds. Transfer of these TCRs to healthy donor CD4+ T cells conferred high antigen sensitivity and polyfunctionality, thus recapitulating key features of the controller CD4 response. Transfer of a high-affinity Gag293-specific TCR also redirected CD8+ T cells to target HIV-1 capsid via nonconventional MHC II restriction. Together, these findings indicate that TCR clonotypes with superior functions are associated with HIV control. Amplification or transfer of such clonotypes may contribute to immunotherapeutic approaches aiming at a functional HIV cure.

Sex steroid deficiency–associated bone loss is microbiota dependent and prevented by probiotics
  By: Jau-Yi Li, Benoit Chassaing, Abdul Malik Tyagi, Chiara Vaccaro, Tao Luo, Jonathan Adams, Trevor M. Darby, M. Neale Weitzmann, Jennifer G. Mulle, Andrew T. Gewirtz, Rheinallt M. Jones, Roberto Pacifici

A eubiotic microbiota influences many physiological processes in the metazoan host, including development and intestinal homeostasis. Here, we have shown that the intestinal microbiota modulates inflammatory responses caused by sex steroid deficiency, leading to trabecular bone loss. In murine models, sex steroid deficiency increased gut permeability, expanded Th17 cells, and upregulated the osteoclastogenic cytokines TNFα (TNF), RANKL, and IL-17 in the small intestine and the BM. In germ-free (GF) mice, sex steroid deficiency failed to increase osteoclastogenic cytokine production, stimulate bone resorption, and cause trabecular bone loss, demonstrating that the gut microbiota is central in sex steroid deficiency–induced trabecular bone loss. Furthermore, we demonstrated that twice-weekly treatment of sex steroid–deficient mice with the probiotics Lactobacillus rhamnosus GG (LGG) or the commercially available probiotic supplement VSL#3 reduces gut permeability, dampens intestinal and BM inflammation, and completely protects against bone loss. In contrast, supplementation with a nonprobiotic strain of E. coli or a mutant LGG was not protective. Together, these data highlight the role that the gut luminal microbiota and increased gut permeability play in triggering inflammatory pathways that are critical for inducing bone loss in sex steroid–deficient mice. Our data further suggest that probiotics that decrease gut permeability have potential as a therapeutic strategy for postmenopausal osteoporosis.

From the gut to the strut: where inflammation reigns, bone abstains
  By: Jameel Iqbal, Tony Yuen, Li Sun, Mone Zaidi

In this issue of the JCI, Li et al. show that germ-free mice, when chemically castrated, do not lose bone — a finding that unequivocally establishes a role of gut microbiota in mediating hypogonadal bone loss. Additionally and not unexpectedly, probiotics reversed hypogonadal osteopenia in sex steroid–deficient mice by preventing the disruption of gut barrier function and dampening cytokine-induced inflammation. The authors propose that TNFα is a key mediator; however, it is very likely that other molecules — including IL-1, IL-6, IL-17, RANKL, OPG, and CCL2 — modulate probiotic action. The results of this study highlight the potential for repurposing probiotics for the therapy of osteoporosis. Future placebo-controlled clinical trials will be required to establish safety and efficacy of probiotics in reducing fracture risk in people.

ESAT-6–dependent cytosolic pattern recognition drives noncognate tuberculosis control in vivo
  By: Andreas Kupz, Ulrike Zedler, Manuela Stäber, Carolina Perdomo, Anca Dorhoi, Roland Brosch, Stefan H.E. Kaufmann

IFN-γ is a critical mediator of host defense against Mycobacterium tuberculosis (Mtb) infection. Antigen-specific CD4+ T cells have long been regarded as the main producer of IFN-γ in tuberculosis (TB), and CD4+ T cell immunity is the main target of current TB vaccine candidates. However, given the recent failures of such a TB vaccine candidate in clinical trials, strategies to harness CD4-independent mechanisms of protection should be included in future vaccine design. Here, we have reported that noncognate IFN-γ production by Mtb antigen–independent memory CD8+ T cells and NK cells is protective during Mtb infection and evaluated the mechanistic regulation of IFN-γ production by these cells in vivo. Transfer of arenavirus- or protein-specific CD8+ T cells or NK cells reduced the mortality and morbidity rates of mice highly susceptible to TB in an IFN-γ–dependent manner. Secretion of IFN-γ by these cell populations required IL-18, sensing of mycobacterial viability, Mtb protein 6-kDa early secretory antigenic target–mediated (ESAT-6–mediated) cytosolic contact, and activation of NLR family pyrin domain–containing protein 3 (NLRP3) inflammasomes in CD11c+ cell subsets. Neutralization of IL-18 abrogated protection in susceptible recipient mice that had received noncognate cells. Moreover, improved Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine–induced protection was lost in the absence of ESAT-6–dependent cytosolic contact. Our findings provide a comprehensive mechanistic framework for antigen-independent IFN-γ secretion in response to Mtb with critical implications for future intervention strategies against TB.

Blocking mitochondrial calcium release in Schwann cells prevents demyelinating neuropathies
  By: Sergio Gonzalez, Jade Berthelot, Jennifer Jiner, Claire Perrin-Tricaud, Ruani Fernando, Roman Chrast, Guy Lenaers, Nicolas Tricaud

Serotonin transporter variant drives preventable gastrointestinal abnormalities in development and function
  By: Kara Gross Margolis, Zhishan Li, Korey Stevanovic, Virginia Saurman, Narek Israelyan, George M. Anderson, Isaac Snyder, Jeremy Veenstra-VanderWeele, Randy D. Blakely, Michael D. Gershon

Autism spectrum disorder (ASD) is an increasingly common behavioral condition that frequently presents with gastrointestinal (GI) disturbances. It is not clear, however, how gut dysfunction relates to core ASD features. Multiple, rare hyperfunctional coding variants of the serotonin (5-HT) transporter (SERT, encoded by SLC6A4) have been identified in ASD. Expression of the most common SERT variant (Ala56) in mice increases 5-HT clearance and causes ASD-like behaviors. Here, we demonstrated that Ala56-expressing mice display GI defects that resemble those seen in mice lacking neuronal 5-HT. These defects included enteric nervous system hypoplasia, slow GI transit, diminished peristaltic reflex activity, and proliferation of crypt epithelial cells. An opposite phenotype was seen in SERT-deficient mice and in progeny of WT dams given the SERT antagonist fluoxetine. The reciprocal phenotypes that resulted from increased or decreased SERT activity support the idea that 5-HT signaling regulates enteric neuronal development and can, when disturbed, cause long-lasting abnormalities of GI function. Administration of a 5-HT4 agonist to Ala56 mice during development prevented Ala56-associated GI perturbations, suggesting that excessive SERT activity leads to inadequate 5-HT4–mediated neurogenesis. We propose that deficient 5-HT signaling during development may contribute to GI and behavioral features of ASD. The consequences of therapies targeting SERT during pregnancy warrant further evaluation.

CD19 CAR–T cells of defined CD4+:CD8+ composition in adult B cell ALL patients
  By: Cameron J. Turtle, Laïla-Aïcha Hanafi, Carolina Berger, Theodore A. Gooley, Sindhu Cherian, Michael Hudecek, Daniel Sommermeyer, Katherine Melville, Barbara Pender, Tanya M. Budiarto, Emily Robinson, Natalia N. Steevens, Colette Chaney, Lorinda Soma, Xueyan Chen, Cecilia Yeung, Brent Wood, Daniel Li, Jianhong Cao, Shelly Heimfeld, Michael C. Jensen, Stanley R. Riddell, David G. Maloney

BACKGROUND. T cells that have been modified to express a CD19-specific chimeric antigen receptor (CAR) have antitumor activity in B cell malignancies; however, identification of the factors that determine toxicity and efficacy of these T cells has been challenging in prior studies in which phenotypically heterogeneous CAR–T cell products were prepared from unselected T cells.

METHODS. We conducted a clinical trial to evaluate CD19 CAR–T cells that were manufactured from defined CD4+ and CD8+ T cell subsets and administered in a defined CD4+:CD8+ composition to adults with B cell acute lymphoblastic leukemia after lymphodepletion chemotherapy.

RESULTS. The defined composition product was remarkably potent, as 27 of 29 patients (93%) achieved BM remission, as determined by flow cytometry. We established that high CAR–T cell doses and tumor burden increase the risks of severe cytokine release syndrome and neurotoxicity. Moreover, we identified serum biomarkers that allow testing of early intervention strategies in patients at the highest risk of toxicity. Risk-stratified CAR–T cell dosing based on BM disease burden decreased toxicity. CD8+ T cell–mediated anti-CAR transgene product immune responses developed after CAR–T cell infusion in some patients, limited CAR–T cell persistence, and increased relapse risk. Addition of fludarabine to the lymphodepletion regimen improved CAR–T cell persistence and disease-free survival.

CONCLUSION. Immunotherapy with a CAR–T cell product of defined composition enabled identification of factors that correlated with CAR–T cell expansion, persistence, and toxicity and facilitated design of lymphodepletion and CAR–T cell dosing strategies that mitigated toxicity and improved disease-free survival.


FUNDING. R01-CA136551; Life Science Development Fund; Juno Therapeutics; Bezos Family Foundation.

Hyperactivation of JAK1 tyrosine kinase induces stepwise, progressive pruritic dermatitis
  By: Takuwa Yasuda, Toshiyuki Fukada, Keigo Nishida, Manabu Nakayama, Masashi Matsuda, Ikuo Miura, Teruki Dainichi, Shinji Fukuda, Kenji Kabashima, Shinji Nakaoka, Bum-Ho Bin, Masato Kubo, Hiroshi Ohno, Takanori Hasegawa, Osamu Ohara, Haruhiko Koseki, Shigeharu Wakana, Hisahiro Yoshida

Skin homeostasis is maintained by the continuous proliferation and differentiation of epidermal cells. The skin forms a strong but flexible barrier against microorganisms as well as physical and chemical insults; however, the physiological mechanisms that maintain this barrier are not fully understood. Here, we have described a mutant mouse that spontaneously develops pruritic dermatitis as the result of an initial defect in skin homeostasis that is followed by induction of a Th2-biased immune response. These mice harbor a mutation that results in a single aa substitution in the JAK1 tyrosine kinase that results in hyperactivation, thereby leading to skin serine protease overexpression and disruption of skin barrier function. Accordingly, treatment with an ointment to maintain normal skin barrier function protected mutant mice from dermatitis onset. Pharmacological inhibition of JAK1 also delayed disease onset. Together, these findings indicate that JAK1-mediated signaling cascades in skin regulate the expression of proteases associated with the maintenance of skin barrier function and demonstrate that perturbation of these pathways can lead to the development of spontaneous pruritic dermatitis.

Alternatively activated macrophages determine repair of the infarcted adult murine heart
  By: Manabu Shiraishi, Yasunori Shintani, Yusuke Shintani, Hidekazu Ishida, Rie Saba, Atsushi Yamaguchi, Hideo Adachi, Kenta Yashiro, Ken Suzuki

Alternatively activated (also known as M2) macrophages are involved in the repair of various types of organs. However, the contribution of M2 macrophages to cardiac repair after myocardial infarction (MI) remains to be fully characterized. Here, we identified CD206+F4/80+CD11b+ M2-like macrophages in the murine heart and demonstrated that this cell population predominantly increases in the infarct area and exhibits strengthened reparative abilities after MI. We evaluated mice lacking the kinase TRIB1 (Trib1–/–), which exhibit a selective depletion of M2 macrophages after MI. Compared with control animals, Trib1–/– mice had a catastrophic prognosis, with frequent cardiac rupture, as the result of markedly reduced collagen fibril formation in the infarct area due to impaired fibroblast activation. The decreased tissue repair observed in Trib1–/– mice was entirely rescued by an external supply of M2-like macrophages. Furthermore, IL-1α and osteopontin were suggested to be mediators of M2-like macrophage–induced fibroblast activation. In addition, IL-4 administration achieved a targeted increase in the number of M2-like macrophages and enhanced the post-MI prognosis of WT mice, corresponding with amplified fibroblast activation and formation of more supportive fibrous tissues in the infarcts. Together, these data demonstrate that M2-like macrophages critically determine the repair of infarcted adult murine heart by regulating fibroblast activation and suggest that IL-4 is a potential biological drug for treating MI.

cAMP/CREB-regulated LINC00473 marks LKB1-inactivated lung cancer and mediates tumor growth
  By: Zirong Chen, Jian-Liang Li, Shuibin Lin, Chunxia Cao, Nicholas T. Gimbrone, Rongqiang Yang, Dongtao A. Fu, Miranda B. Carper, Eric B. Haura, Matthew B. Schabath, Jianrong Lu, Antonio L. Amelio, W. Douglas Cress, Frederic J. Kaye, Lizi Wu

The LKB1 tumor suppressor gene is frequently mutated and inactivated in non–small cell lung cancer (NSCLC). Loss of LKB1 promotes cancer progression and influences therapeutic responses in preclinical studies; however, specific targeted therapies for lung cancer with LKB1 inactivation are currently unavailable. Here, we have identified a long noncoding RNA (lncRNA) signature that is associated with the loss of LKB1 function. We discovered that LINC00473 is consistently the most highly induced gene in LKB1-inactivated human primary NSCLC samples and derived cell lines. Elevated LINC00473 expression correlated with poor prognosis, and sustained LINC00473 expression was required for the growth and survival of LKB1-inactivated NSCLC cells. Mechanistically, LINC00473 was induced by LKB1 inactivation and subsequent cyclic AMP–responsive element–binding protein (CREB)/CREB-regulated transcription coactivator (CRTC) activation. We determined that LINC00473 is a nuclear lncRNA and interacts with NONO, a component of the cAMP signaling pathway, thereby facilitating CRTC/CREB-mediated transcription. Collectively, our study demonstrates that LINC00473 expression potentially serves as a robust biomarker for tumor LKB1 functional status that can be integrated into clinical trials for patient selection and treatment evaluation, and implicates LINC00473 as a therapeutic target for LKB1-inactivated NSCLC.

Hepatic glycogen can regulate hypoglycemic counterregulation via a liver-brain axis
  By: Jason J. Winnick, Guillaume Kraft, Justin M. Gregory, Dale S. Edgerton, Phillip Williams, Ian A. Hajizadeh, Maahum Z. Kamal, Marta Smith, Ben Farmer, Melanie Scott, Doss Neal, E. Patrick Donahue, Eric Allen, Alan D. Cherrington

Liver glycogen is important for the counterregulation of hypoglycemia and is reduced in individuals with type 1 diabetes (T1D). Here, we examined the effect of varying hepatic glycogen content on the counterregulatory response to low blood sugar in dogs. During the first 4 hours of each study, hepatic glycogen was increased by augmenting hepatic glucose uptake using hyperglycemia and a low-dose intraportal fructose infusion. After hepatic glycogen levels were increased, animals underwent a 2-hour control period with no fructose infusion followed by a 2-hour hyperinsulinemic/hypoglycemic clamp. Compared with control treatment, fructose infusion caused a large increase in liver glycogen that markedly elevated the response of epinephrine and glucagon to a given hypoglycemia and increased net hepatic glucose output (NHGO). Moreover, prior denervation of the liver abolished the improved counterregulatory responses that resulted from increased liver glycogen content. When hepatic glycogen content was lowered, glucagon and NHGO responses to insulin-induced hypoglycemia were reduced. We conclude that there is a liver-brain counterregulatory axis that is responsive to liver glycogen content. It remains to be determined whether the risk of iatrogenic hypoglycemia in T1D humans could be lessened by targeting metabolic pathway(s) associated with hepatic glycogen repletion.

Two superoxide dismutase prion strains transmit amyotrophic lateral sclerosis–like disease
  By: Elaheh Ekhtiari Bidhendi, Johan Bergh, Per Zetterström, Peter M. Andersen, Stefan L. Marklund, Thomas Brännström

Amyotrophic lateral sclerosis (ALS) is an adult-onset degeneration of motor neurons that is commonly caused by mutations in the gene encoding superoxide dismutase 1 (SOD1). Both patients and Tg mice expressing mutant human SOD1 (hSOD1) develop aggregates of unknown importance. In Tg mice, 2 different strains of hSOD1 aggregates (denoted A and B) can arise; however, the role of these aggregates in disease pathogenesis has not been fully characterized. Here, minute amounts of strain A and B hSOD1 aggregate seeds that were prepared by centrifugation through a density cushion were inoculated into lumbar spinal cords of 100-day-old mice carrying a human SOD1 Tg. Mice seeded with A or B aggregates developed premature signs of ALS and became terminally ill after approximately 100 days, which is 200 days earlier than for mice that had not been inoculated or were given a control preparation. Concomitantly, exponentially growing strain A and B hSOD1 aggregations propagated rostrally throughout the spinal cord and brainstem. The phenotypes provoked by the A and B strains differed regarding progression rates, distribution, end-stage aggregate levels, and histopathology. Together, our data indicate that the aggregate strains are prions that transmit a templated, spreading aggregation of hSOD1, resulting in a fatal ALS-like disease.

CHD4-regulated plasmin activation impacts lymphovenous hemostasis and hepatic vascular integrity
  By: Patrick L. Crosswhite, Joanna J. Podsiadlowska, Carol D. Curtis, Siqi Gao, Lijun Xia, R. Sathish Srinivasan, Courtney T. Griffin

The chromatin-remodeling enzyme CHD4 maintains vascular integrity at mid-gestation; however, it is unknown whether this enzyme contributes to later blood vessel or lymphatic vessel development. Here, we addressed this issue in mice harboring a deletion of Chd4 specifically in cells that express lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), which include lymphatic endothelial cells (LECs) and liver sinusoidal endothelial cells. Chd4 mutant embryos died before birth and exhibited severe edema, blood-filled lymphatics, and liver hemorrhage. CHD4-deficient embryos developed normal lymphovenous (LV) valves, which regulate the return of lymph to the blood circulation; however, these valves lacked the fibrin-rich thrombi that prevent blood from entering the lymphatic system. Transcripts of the urokinase plasminogen activator receptor (uPAR), which facilitates activation of the fibrin-degrading protease plasmin, were upregulated in Chd4 mutant LYVE1+ cells, and plasmin activity was elevated near the LV valves. Genetic reduction of the uPAR ligand urokinase prevented degradation of fibrin-rich thrombi at the LV valves and largely resolved the blood-filled lymphatics in Chd4 mutants. Urokinase reduction also ameliorated liver hemorrhage and prolonged embryonic survival by reducing plasmin-mediated extracellular matrix degradation around sinusoidal blood vessels. These results highlight the susceptibility of LV thrombi and liver sinusoidal vessels to plasmin-mediated damage and demonstrate the importance of CHD4 in regulating embryonic plasmin activation after mid-gestation.

Clinical iron deficiency disturbs normal human responses to hypoxia
  By: Matthew C. Frise, Hung-Yuan Cheng, Annabel H. Nickol, M. Kate Curtis, Karen A. Pollard, David J. Roberts, Peter J. Ratcliffe, Keith L. Dorrington, Peter A. Robbins

BACKGROUND. Iron bioavailability has been identified as a factor that influences cellular hypoxia sensing, putatively via an action on the hypoxia-inducible factor (HIF) pathway. We therefore hypothesized that clinical iron deficiency would disturb integrated human responses to hypoxia.

METHODS. We performed a prospective, controlled, observational study of the effects of iron status on hypoxic pulmonary hypertension. Individuals with absolute iron deficiency (ID) and an iron-replete (IR) control group were exposed to two 6-hour periods of isocapnic hypoxia. The second hypoxic exposure was preceded by i.v. infusion of iron. Pulmonary artery systolic pressure (PASP) was serially assessed with Doppler echocardiography.

RESULTS. Thirteen ID individuals completed the study and were age- and sex-matched with controls. PASP did not differ by group or study day before each hypoxic exposure. During the first 6-hour hypoxic exposure, the rise in PASP was 6.2 mmHg greater in the ID group (absolute rises 16.1 and 10.7 mmHg, respectively; 95% CI for difference, 2.7–9.7 mmHg, P = 0.001). Intravenous iron attenuated the PASP rise in both groups; however, the effect was greater in ID participants than in controls (absolute reductions 11.1 and 6.8 mmHg, respectively; 95% CI for difference in change, –8.3 to –0.3 mmHg, P = 0.035). Serum erythropoietin responses to hypoxia also differed between groups.

CONCLUSION. Clinical iron deficiency disturbs normal responses to hypoxia, as evidenced by exaggerated hypoxic pulmonary hypertension that is reversed by subsequent iron administration. Disturbed hypoxia sensing and signaling provides a mechanism through which iron deficiency may be detrimental to human health.


FUNDING. M.C. Frise is the recipient of a British Heart Foundation Clinical Research Training Fellowship (FS/14/48/30828). K.L. Dorrington is supported by the Dunhill Medical Trust (R178/1110). D.J. Roberts was supported by R&D funding from National Health Service (NHS) Blood and Transplant and a National Institute for Health Research (NIHR) Programme grant (RP-PG-0310-1004). This research was funded by the NIHR Oxford Biomedical Research Centre Programme.

Bicarbonate correction of ketoacidosis alters host-pathogen interactions and alleviates mucormycosis
  By: Teclegiorgis Gebremariam, Lin Lin, Mingfu Liu, Dimitrios P. Kontoyiannis, Samuel French, John E. Edwards Jr., Scott G. Filler, Ashraf S. Ibrahim

Patients with diabetic ketoacidosis (DKA) are uniquely predisposed to mucormycosis, an angioinvasive fungal infection with high mortality. Previously, we demonstrated that Rhizopus invades the endothelium via binding of fungal CotH proteins to the host receptor GRP78. Here, we report that surface expression of GRP78 is increased in endothelial cells exposed to physiological concentrations of β-hydroxy butyrate (BHB), glucose, and iron that are similar to those found in DKA patients. Additionally, expression of R. oryzae CotH was increased within hours of incubation with DKA-associated concentrations of BHB, glucose, and iron, augmenting the ability of R. oryzae to invade and subsequently damage endothelial cells in vitro. BHB exposure also increased fungal growth and attenuated R. oryzae neutrophil-mediated damage. Further, mice given BHB developed clinical acidosis and became extremely susceptible to mucormycosis, but not aspergillosis, while sodium bicarbonate reversed this susceptibility. BHB-related acidosis exerted a direct effect on both GRP78 and CotH expression, an effect not seen with lactic acidosis. However, BHB also indirectly compromised the ability of transferrin to chelate iron, as iron chelation combined with sodium bicarbonate completely protected endothelial cells from Rhizopus-mediated invasion and damage. Our results dissect the pathogenesis of mucormycosis during ketoacidosis and reinforce the importance of careful metabolic control of the acidosis to prevent and manage this infection.

Reciprocal interplay between thyroid hormone and microRNA-21 regulates hedgehog pathway–driven skin tumorigenesis
  By: Daniela Di Girolamo, Raffaele Ambrosio, Maria A. De Stefano, Giuseppina Mancino, Tommaso Porcelli, Cristina Luongo, Emery Di Cicco, Giulia Scalia, Luigi Del Vecchio, Annamaria Colao, Andrzej A. Dlugosz, Caterina Missero, Domenico Salvatore, Monica Dentice

The thyroid hormone–inactivating (TH-inactivating) enzyme type 3 iodothyronine deiodinase (D3) is an oncofetal protein that is rarely expressed in adult life but has been shown to be reactivated in the context of proliferation and neoplasms. D3 terminates TH action within the tumor microenvironment, thereby enhancing cancer cell proliferation. However, the pathological role of D3 and the contribution of TH metabolism in cancer have yet to be fully explored. Here, we describe a reciprocal regulation between TH action and the cancer-associated microRNA-21 (miR21) in basal cell carcinoma (BCC) skin tumors. We found that, besides being negatively regulated by TH at the transcriptional level, miR21 attenuates the TH signal by increasing D3 levels. The ability of miR21 to positively regulate D3 was mediated by the tumor suppressor gene GRHL3, a hitherto unrecognized D3 transcriptional inhibitor. Finally, in a BCC mouse model, keratinocyte-specific D3 depletion markedly reduced tumor growth. Together, our results establish TH action as a critical hub of multiple oncogenic pathways and provide functional and mechanistic evidence of the involvement of TH metabolism in BCC tumorigenesis. Moreover, our results identify a miR21/GRHL3/D3 axis that reduces TH in the tumor microenvironment and has potential to be targeted as a therapeutic approach to BCC.

Enhanced antagonism of BST-2 by a neurovirulent SIV envelope
  By: Kenta Matsuda, Chia-Yen Chen, Sonya Whitted, Elena Chertova, David J. Roser, Fan Wu, Ronald J. Plishka, Ilnour Ourmanov, Alicia Buckler-White, Jeffrey D. Lifson, Klaus Strebel, Vanessa M. Hirsch

Current antiretroviral therapy (ART) is not sufficient to completely suppress disease progression in the CNS, as indicated by the rising incidence of HIV-1–associated neurocognitive disorders (HAND) among infected individuals on ART. It is not clear why some HIV-1–infected patients develop HAND, despite effective repression of viral replication in the circulation. SIV-infected nonhuman primate models are widely used to dissect the mechanisms of viral pathogenesis in the CNS. Here, we identified 4 amino acid substitutions in the cytoplasmic tail of viral envelope glycoprotein gp41 of the neurovirulent virus SIVsm804E that enhance replication in macrophages and associate with enhanced antagonism of the host restriction factor BM stromal cell antigen 2 (BST-2). Rhesus macaques were inoculated with a variant of the parental virus SIVsmE543-3 that had been engineered to contain the 4 amino acid substitutions present in gp41 of SIVsm804E. Compared with WT virus–infected controls, animals infected with mutant virus exhibited higher viral load in cerebrospinal fluid. Together, these results are consistent with a potential role for BST-2 in the CNS microenvironment and suggest that BST-2 antagonists may serve as a possible target for countermeasures against HAND.

Proteolytic activation defines distinct lymphangiogenic mechanisms for VEGFC and VEGFD
  By: Hung M. Bui, David Enis, Marius R. Robciuc, Harri J. Nurmi, Jennifer Cohen, Mei Chen, Yiqing Yang, Veerpal Dhillon, Kathy Johnson, Hong Zhang, Robert Kirkpatrick, Elizabeth Traxler, Andrey Anisimov, Kari Alitalo, Mark L. Kahn

Lymphangiogenesis is supported by 2 homologous VEGFR3 ligands, VEGFC and VEGFD. VEGFC is required for lymphatic development, while VEGFD is not. VEGFC and VEGFD are proteolytically cleaved after cell secretion in vitro, and recent studies have implicated the protease a disintegrin and metalloproteinase with thrombospondin motifs 3 (ADAMTS3) and the secreted factor collagen and calcium binding EGF domains 1 (CCBE1) in this process. It is not well understood how ligand proteolysis is controlled at the molecular level or how this process regulates lymphangiogenesis, because these complex molecular interactions have been difficult to follow ex vivo and test in vivo. Here, we have developed and used biochemical and cellular tools to demonstrate that an ADAMTS3-CCBE1 complex can form independently of VEGFR3 and is required to convert VEGFC, but not VEGFD, into an active ligand. Consistent with these ex vivo findings, mouse genetic studies revealed that ADAMTS3 is required for lymphatic development in a manner that is identical to the requirement of VEGFC and CCBE1 for lymphatic development. Moreover, CCBE1 was required for in vivo lymphangiogenesis stimulated by VEGFC but not VEGFD. Together, these studies reveal that lymphangiogenesis is regulated by two distinct proteolytic mechanisms of ligand activation: one in which VEGFC activation by ADAMTS3 and CCBE1 spatially and temporally patterns developing lymphatics, and one in which VEGFD activation by a distinct proteolytic mechanism may be stimulated during inflammatory lymphatic growth.

Cre-inducible human CD59 mediates rapid cell ablation after intermedilysin administration
  By: Dechun Feng, Shen Dai, Fengming Liu, Yosuke Ohtake, Zhou Zhou, Hua Wang, Yonggang Zhang, Alison Kearns, Xiao Peng, Faliang Zhu, Umar Hayat, Man Li, Yong He, Mingjiang Xu, Chunling Zhao, Min Cheng, Lining Zhang, Hong Wang, Xiaofeng Yang, Cynthia Ju, Elizabeth C. Bryda, Jennifer Gordon, Kamel Khalili, Wenhui Hu, Shuxin Li, Xuebin Qin, Bin Gao

Cell ablation is a powerful tool for studying cell lineage and/or function; however, current cell-ablation models have limitations. Intermedilysin (ILY), a cytolytic pore-forming toxin that is secreted by Streptococcus intermedius, lyses human cells exclusively by binding to the human complement regulator CD59 (hCD59), but does not react with CD59 from nonprimates. Here, we took advantage of this feature of ILY and developed a model of conditional and targeted cell ablation by generating floxed STOP-CD59 knockin mice (ihCD59), in which expression of human CD59 only occurs after Cre-mediated recombination. The administration of ILY to ihCD59+ mice crossed with various Cre-driver lines resulted in the rapid and specific ablation of immune, epithelial, or neural cells without off-target effects. ILY had a large pharmacological window, which allowed us to perform dose-dependent studies. Finally, the ILY/ihCD59-mediated cell-ablation method was tested in several disease models to study immune cell functionalities, hepatocyte and/or biliary epithelial damage and regeneration, and neural cell damage. Together, the results of this study demonstrate the utility of the ihCD59 mouse model for studying the effects of cell ablation in specific organ systems in a variety of developmental and disease states.

Immune activation and response to pembrolizumab in POLE-mutant endometrial cancer
  By: Janice M. Mehnert, Anshuman Panda, Hua Zhong, Kim Hirshfield, Sherri Damare, Katherine Lane, Levi Sokol, Mark N. Stein, Lorna Rodriguez-Rodriquez, Howard L. Kaufman, Siraj Ali, Jeffrey S. Ross, Dean C. Pavlick, Gyan Bhanot, Eileen P. White, Robert S. DiPaola, Ann Lovell, Jonathan Cheng, Shridar Ganesan

Antibodies that target the immune checkpoint receptor programmed cell death protein 1 (PD-1) have resulted in prolonged and beneficial responses toward a variety of human cancers. However, anti–PD-1 therapy in some patients provides no benefit and/or results in adverse side effects. The factors that determine whether patients will be drug sensitive or resistant are not fully understood; therefore, genomic assessment of exceptional responders can provide important insight into patient response. Here, we identified a patient with endometrial cancer who had an exceptional response to the anti–PD-1 antibody pembrolizumab. Clinical grade targeted genomic profiling of a pretreatment tumor sample from this individual identified a mutation in DNA polymerase epsilon (POLE) that associated with an ultramutator phenotype. Analysis of The Cancer Genome Atlas (TCGA) revealed that the presence of POLE mutation associates with high mutational burden and elevated expression of several immune checkpoint genes. Together, these data suggest that cancers harboring POLE mutations are good candidates for immune checkpoint inhibitor therapy.

Copyright © 2003-2016, Inc. All Rights Reserved.